New Tricks of the Trade for Crystal Structure Refinement
نویسندگان
چکیده
Accurate crystal structures and their experimental uncertainties, determined by X-ray diffraction/neutron diffraction techniques, are vital for crystal engineering studies, such as polymorph stability and crystal morphology calculations. Because of differences in crystal growth and data measurement conditions, crystallographic databases often contain multiple entries of varying quality of the same compound. The choice of the most reliable and best quality crystal structure from many very similar structures remains an unresolved problem, especially for nonexperts. In addition, while crystallographers can make use of some professional software (i.e., Materials Studio) for structure refinement, noncrystallographers may not have access to it. In the present paper, we propose a simple method to study the sensitivity of the crystal lattice energy to changes in the structural parameters, which creates a diagnostic tool to test the quality of crystal structure files and to improve the low-quality structures based on lattice energy distribution. Thus, noncrystallographers could take the proposed idea and program/optimize crystal structure by themselves. They can have their in-house program to determine the reliability of the selected crystal data and then use the best quality data or carry out structural optimization for low-quality data. The proposed method will benefit a broad cross-section of scientific researchers, especially those in solid-state and physical chemistry.
منابع مشابه
Grain Refinement Efficiency of Multi-Axial Incremental Forging and Shearing: A Crystal Plasticity Analysis
Severe plastic deformation is a technical method to produce functional material with special properties such as high strength and specific physical properties. Selection of an efficient severe plastic deformation for grain refinement is a challenging field of study and using a modeling technique to predict the refinement efficiency has gained a lot of attentions. A comparative study was carried...
متن کاملAn efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملThe New Method for Optical Channel Drop Filter with High Quality Factor Based on Triangular Photonic Crystal Design
We have designed a new type of optical channel drop filter (CDF) based on two dimensionaltriangular lattice photonic crystals. CDF operation is based on coupling to the photonic crystalwaveguide. The proposed structure is optimized to work as a CDF for obtaining the CDFcharacteristics and band structure of the filter the finite difference time domain (FDTD) method andplane wave expansion (PWE) ...
متن کاملCrystal Chemistry of Immobilization of tetravalent Ce and Se in ceramic matrix of sodium zirconium phosphates
The safe and effective management of radioactive waste has been given utmost importance from the very inception of nuclear industry in India and it covers the entire range of activities from handling, treatment, conditioning, transport, storage and finally disposal. Radioactive waste is generated at various stages of the nuclear fuel cycle, which includes the mining and milling of uranium ore, ...
متن کاملSynthesis and crystal structure of a new thiosemicarbzone, acenaphthenequinone thiosemicarbazone mono methanol
A new thiosemicarbzone compound was prepared by the reaction of acenaphthenequinone and thiosemicarbazide (1:1 molar ratio) in absolute methanol at 70°C. The crystal structure of this compound, acenaphthenequinone thiosemicarbazone mono methanol, was determined by X-ray crystallography. The unit cell parameters are as follows: a = 7.0384(14) Ǻ, b = 14.202(3) Ǻ, c = 14.270(3) Ǻ, β = 104.26(3)°. ...
متن کامل